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Geometric Modelling of the Linear Delta

Introduction

The Robot « linear Delta »* is a variant of the robot DELTA invented by Professor Reymond Clavel in
1985. It is a 3 DOFs translational parallel structure providing the X, Y and Z movements of the mobile
plate. The actuated movements are all linear guided and this is why this variant is called a « linear
Delta »*

Descriptions and parametrization

The figure below represents different linear Delta variants.

Figure 1. Different Linear Delta realizations

Z
All of these structures are realized with a ternary Ternary symmetry
. . Rb
symmetry which means that, from a top view ,
q 4200

perspective, the linear guideways belong to a circle with |
120° between each point (fig. 2). t

Parameters:
e The length of the parallel bars is Lb.
e The diameter of the base is 2xRa
e The diameter of the mobile plate (nacelle) is 2xRb
¢ g1, q2 and g3 are the joint coordinates, ie. the value g
of the positions of the actuated carriages of each N ;
linear guideway. The points Al, A2 and A3 are (:,:) SymmetnicaRy, }

) . workspace / =
associated to the actuated carriages \ /
/

e The vertical axis Z is referenced at the center and the =
top of the robot (as in the figure). X and Y are shown | Figure 2. Parametric representation of the linear Delta
in the figures 3 and 4.
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Figure 3. Parametric
aql 'i' Al representation of the linear Delta.
A3 | 93 The parallel bars are simplified with
Lb | |_ one segment each of length Lb. The
double spherical joints at each
extremity of each parallel bar are
shere &2 represented by a universal joint. The
B2 movement of each universal joint,
Sphere 51 i Sphere 3 i
B respectively at Al, A2 or A3,
B3 .
generate a spherical calotte of
diameter Lb and respectively cross
the mobile plate points B1, B2 and
B3.
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Figure 4.a, top-view of the linear Delta. The actuated Figure 4.b, top-view of the mobile plate.
points A1, A2 and A3 are the represented by universal The points B1, B2 and B3 are the
joints. represented by universal joints.
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Movement of the end effector and equations

As described in the figure 3, the parallel bars are simplified with one segment each of length Lb. The
double spherical joints at each extremity of each parallel bar are represented by a universal joint. The
movement of each universal joint, respectively at A1, A2 or A3, generate a spherical calotte of diameter
Lb and respectively cross the mobile plate points B1, B2 and B3. This notice is at the basis of the
equations of the movement of the mobile plate. The 3 spheres S1 and S2 and S3 are respectively
centred at the points A1 and A2 and A3 and cross the mobile plate respectively at the points B1 and
B2 and B3. The coordinates of all these points are given the figures 4.a and 4.b.

The objective:

The goal of geometric modelling, is to find the coordinate transformation between the joint
coordinates (actuated movements) {1, g2, g3} and the coordinates of the end effector {X, y, z}.

The equations of the three spheres may be described as follows:

{S1} (xp1 — X%a1)* + (Vg1 — Ya1)? + (2Zp1 — 241)* = Lb?
{s2} (X2 — Xa2)* + (VB2 — Yaz)? + (22 — 2a2)* = Lb?
{S3} (xp3 — %a3)? + (Vg3 — Yaz)* + (23 — Za3)* = Lb?

Let us focus on the equation describing the sphere S1, by replacing the values of each coordinate.
{s1} (xp1 — %41)* + Vp1 — Ya1)* + (2Zp1 — 2a1)* = Lb?
(x —Rb+ Ra)*>+ (y)? + (z+ q1)* = Lb?

(z+q,)? = Lb?> — (x — Rb + Ra)? — (y)?

(z+q,) = £/ Lb% — (x — Rb + Ra)? — (y)? (2 solutions are possibles)

z= —q; ++ Lb? — (x — Rb + Ra)? — (y)?

At this stage, 2 solutions are possible. In such case we always should understand how the robot behave
in order to try finding impossible situations thanks to the information of limits, sign and geometrical
boundaries. We can discriminate these 2 solutions by discarding the one which gives a possible positive
z.

Hence, since the z coordinate is always negative, the final solution is given by the following equations:

z= —q; —+ Lb? — (x — Rb + Ra)? — (y)?

q = —z—+/ Lb? — (x — Rb + Ra)* — (¥)?
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The equation of the sphere S2 is given as follows:
{S2} (%52 = %42)* + Vg2 = Yaz)? + (Zg2 — Za2)* = Lb?
(x + Rb.cos(60°) — Ra.cos (60°))% + (y — Rb.sin(60°) — Ra.sin(60°))* + (z + q,)? = Lb?
(x — (Ra — Rb).cos(60°))? + (y — (Ra — Rb).sin(60°))* + (z + q,)* = Lb?

(z + q2)? = Lb? — (x — (Ra — Rb).cos(60°))? + (y — (Ra — Rb).sin(60°))?

(z + q;) = £4/Lb? — (x — (Ra — Rb).cos(60°))? + (y — (Ra — Rb).sin(60°))?

q, = —z £ /Lb? — (x — (Ra — Rb).cos(60°))? + (y — (Ra — Rb).sin(60°))2

For the same reasons as for (s, since z is always negative, the adopted expression of (; is as follows:

q2 = —z —\/Lb? — (x — (Ra — Rb).cos(60°))? + (y — (Ra — Rb).sin(60°))?

The equation of the sphere S3 is given as follows:
{S3}  (xms — %u3)® + (Vps — Yas)® + (2p3 — 2a3)* = Lb?
(x + Rb.cos(60°) — Ra.cos (60°))% + (y — Rb.sin(60°) + Ra.sin(60°))* + (z + q3)* = Lb?
(x — (Ra — Rb).cos(60°))* + (v + (Ra — Rb).sin(60°))* + (z + q3)* = Lb?

(z + q3)* = Lb? — (x — (Ra — Rb).cos(60°))? + (y + (Ra — Rb).sin(60°))?

(z + q3) = £/Lb? — (x — (Ra — Rb).cos(60°))? + (y + (Ra — Rb).sin(60°))?

q3 = —z + /Lb2 — (x — (Ra — Rb). cos(60°))2 + (y + (Ra — Rb).sin(60°))2

Since z is always negative, the expression of 3 is as follows:

q3 = —z —\/Lb2 — (x — (Ra — Rb).cos(60°))2 + (y + (Ra — Rb).sin(60°))2

The inverse geometric model is finally given by :

q1 = —z— ./ Lb?2 — (x — Rb + Ra)? — (y)?

q; = —z —/Lb? — (x — (Ra — Rb).c0s(60°))% + (y — (Ra — Rb).sin(60°))2

qs = —z —/Lb? — (x — (Ra — Rb).c0s(60°))% + (y + (Ra — Rb).sin(60°))2
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Observation:

In the case of this robot with a ternary symmetry, another procedure of obtaining the geometric model
may be carried out by reducing the size of the basis by Rb (ray of the mobile place). This does not
modify anything to the output. The mobile plate is hence reduced to a one point of coordinates {X, y,
z}. The figures below point out the procedure:
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Figure 5. Parametric representation of the linear Delta by bringing the parallel bars to the centre of the mobile
plate (by reducing the basis by Rb). (Left) perspective. (Right) top view. The movement of each universal joint,
respectively at A1, A2 or A3, generate a spherical calotte of diameter Lb and respectively cross the mobile plate
at the centre of the mobile plate B.

The three spheres intersect all at the tool centre point and are given by the following equations:
{S1} (x = x41)* + y = Ya1)* + (2 — 241)* = Lb?
{s2} (x = x22)* + V = Yaz)* + (2 — z42)* = Lb?

{s3} (x —x43)* + (v — Ya3)* + (2 — za3)* = Lb?
Hence given by:
{81} (x—Rab)*+ ()’ + (z+ ) = Lb®
{s2} (x — Rab. cos (60°))* + (y — Rab.sin (60°))* + (z + q;)* = Lb*
{$3} (x — Rab.cos (60°)) + (y + Rab.sin (60°))* + (z + q3)* = Lb*
With Rab = Ra-Rb.
Which correspond to the same equations as before and avoid expressing the coordinates of the

intersecting points (B1 and B2 and B3).at the mobile plate
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