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Geometric Modelling of the Linear Delta  

 

Introduction 

The Robot « linear Delta »* is a variant of the robot DELTA invented by Professor Reymond Clavel in 

1985. It is a 3 DOFs translational parallel structure providing the X, Y and Z movements of the mobile 

plate. The actuated movements are all linear guided and this is why this variant is called a « linear 

Delta »* 

 

Descriptions and parametrization 

The figure below represents different linear Delta variants.  

 

Figure 1. Different Linear Delta realizations 

 

All of these structures are realized with a ternary 
symmetry which means that, from a top view 
perspective, the linear guideways belong to a circle with 
120° between each point (fig. 2). 
 
Parameters: 

• The length of the parallel bars is Lb.  

• The diameter of the base is 2xRa 

• The diameter of the mobile plate (nacelle) is 2xRb 

• q1, q2 and q3 are the joint coordinates, ie. the value 
of the positions of the actuated carriages of each 
linear guideway. The points A1, A2 and A3 are 
associated to the actuated carriages 
 

• The vertical axis Z is referenced at the center and the 
top of the robot (as in the figure). X and Y are shown 
in the figures 3 and 4. 

 
Figure 2. Parametric representation of the linear Delta 
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Figure 3. Parametric 
representation of the linear Delta. 
 
The parallel bars are simplified with 
one segment each of length Lb. The 
double spherical joints at each 
extremity of each parallel bar are 
represented by a universal joint. The 
movement of each universal joint, 
respectively at A1, A2 or A3, 
generate a spherical calotte of 
diameter Lb and respectively cross 
the mobile plate points B1, B2 and 
B3.  

 

 

 

 

Figure 4.a, top-view of the linear Delta. The actuated 
points A1, A2 and A3 are the represented by universal 
joints. 

Figure 4.b, top-view of the mobile plate. 
The points B1, B2 and B3 are the 
represented by universal joints. 
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Movement of the end effector and equations 

As described in the figure 3, the parallel bars are simplified with one segment each of length Lb. The 

double spherical joints at each extremity of each parallel bar are represented by a universal joint. The 

movement of each universal joint, respectively at A1, A2 or A3, generate a spherical calotte of diameter 

Lb and respectively cross the mobile plate points B1, B2 and B3. This notice is at the basis of the 

equations of the movement of the mobile plate. The 3 spheres S1 and S2 and S3 are respectively 

centred at the points A1 and A2 and A3 and cross the mobile plate respectively at the points B1 and 

B2 and B3. The coordinates of all these points are given the figures 4.a and 4.b. 

The objective: 

The goal of geometric modelling, is to find the coordinate transformation between the joint 

coordinates (actuated movements) {q1, q2, q3} and the coordinates of the end effector {x, y, z}. 

 

The equations of the three spheres may be described as follows: 

{S1} (𝑥𝐵1 − 𝑥𝐴1)2 + (𝑦𝐵1 − 𝑦𝐴1)2 +  (𝑧𝐵1 − 𝑧𝐴1)2 = 𝐿𝑏2  
 

{S2} (𝑥𝐵2 − 𝑥𝐴2)2 + (𝑦𝐵2 − 𝑦𝐴2)2 +  (𝑧𝐵2 − 𝑧𝐴2)2 = 𝐿𝑏2  
 

{S3} (𝑥𝐵3 − 𝑥𝐴3)2 + (𝑦𝐵3 − 𝑦𝐴3)2 +  (𝑧𝐵3 − 𝑧𝐴3)2 = 𝐿𝑏2  
 

Let us focus on the equation describing the sphere S1, by replacing the values of each coordinate. 

{S1} (𝑥𝐵1 − 𝑥𝐴1)2 + (𝑦𝐵1 − 𝑦𝐴1)2 +  (𝑧𝐵1 − 𝑧𝐴1)2 = 𝐿𝑏2  

(𝑥 − 𝑅𝑏 + 𝑅𝑎)2 + (𝑦)2 +  (𝑧 + 𝑞1)2 = 𝐿𝑏2  

(𝑧 + 𝑞1)2 =  𝐿𝑏2 − (𝑥 − 𝑅𝑏 + 𝑅𝑎)2 − (𝑦)2 

(𝑧 + 𝑞1) =  ±√ 𝐿𝑏2 − (𝑥 − 𝑅𝑏 + 𝑅𝑎)2 − (𝑦)2  (2 solutions are possibles) 

𝑧 =  −𝑞1 ± √ 𝐿𝑏2 − (𝑥 − 𝑅𝑏 + 𝑅𝑎)2 − (𝑦)2 

 
At this stage, 2 solutions are possible. In such case we always should understand how the robot behave 

in order to try finding impossible situations thanks to the information of limits, sign and geometrical 

boundaries. We can discriminate these 2 solutions by discarding the one which gives a possible positive 

z. 

Hence, since the z coordinate is always negative, the final solution is given by the following equations: 

𝑧 =  −𝑞1 − √ 𝐿𝑏2 − (𝑥 − 𝑅𝑏 + 𝑅𝑎)2 − (𝑦)2 

 𝑞1 =  −𝑧 − √ 𝐿𝑏2 − (𝑥 − 𝑅𝑏 + 𝑅𝑎)2 − (𝑦)2 

_____________________ 
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The equation of the sphere S2 is given as follows: 

{S2} (𝑥𝐵2 − 𝑥𝐴2)2 + (𝑦𝐵2 − 𝑦𝐴2)2 + (𝑧𝐵2 − 𝑧𝐴2)2 = 𝐿𝑏2 

(𝑥 + 𝑅𝑏. cos(60°) − 𝑅𝑎. cos (60°))2 + (𝑦 − 𝑅𝑏. sin(60°) − 𝑅𝑎. sin(60°))2 +  (𝑧 + 𝑞2)2 = 𝐿𝑏2  

(𝑥 − (𝑅𝑎 − 𝑅𝑏). cos(60°))2 + (𝑦 − (𝑅𝑎 − 𝑅𝑏). sin(60°))2 + (𝑧 + 𝑞2)2 = 𝐿𝑏2 

(𝑧 + 𝑞2)2 = 𝐿𝑏2 − (𝑥 − (𝑅𝑎 − 𝑅𝑏). cos(60°))2 + (𝑦 − (𝑅𝑎 − 𝑅𝑏). sin(60°))2 

(𝑧 + 𝑞2) = ±√𝐿𝑏2 − (𝑥 − (𝑅𝑎 − 𝑅𝑏). cos(60°))2 + (𝑦 − (𝑅𝑎 − 𝑅𝑏). sin(60°))2 

𝑞2 = −𝑧 ± √𝐿𝑏2 − (𝑥 − (𝑅𝑎 − 𝑅𝑏). cos(60°))2 + (𝑦 − (𝑅𝑎 − 𝑅𝑏). sin(60°))2 

 

For the same reasons as for q1, since z is always negative, the adopted expression of q2 is as follows: 

  𝑞2 = −𝑧 − √𝐿𝑏2 − (𝑥 − (𝑅𝑎 − 𝑅𝑏). cos(60°))2 + (𝑦 − (𝑅𝑎 − 𝑅𝑏). sin(60°))2 

_____________________ 

The equation of the sphere S3 is given as follows: 

{S3} (𝑥𝐵3 − 𝑥𝐴3)2 + (𝑦𝐵3 − 𝑦𝐴3)2 + (𝑧𝐵3 − 𝑧𝐴3)2 = 𝐿𝑏2  

(𝑥 + 𝑅𝑏. cos(60°) − 𝑅𝑎. cos (60°))2 + (𝑦 − 𝑅𝑏. sin(60°) + 𝑅𝑎. sin(60°))2 +  (𝑧 + 𝑞3)2 = 𝐿𝑏2  

(𝑥 − (𝑅𝑎 − 𝑅𝑏). cos(60°))2 + (𝑦 + (𝑅𝑎 − 𝑅𝑏). sin(60°))2 + (𝑧 + 𝑞3)2 = 𝐿𝑏2 

(𝑧 + 𝑞3)2 = 𝐿𝑏2 − (𝑥 − (𝑅𝑎 − 𝑅𝑏). cos(60°))2 + (𝑦 + (𝑅𝑎 − 𝑅𝑏). sin(60°))2 

(𝑧 + 𝑞3) = ±√𝐿𝑏2 − (𝑥 − (𝑅𝑎 − 𝑅𝑏). cos(60°))2 + (𝑦 + (𝑅𝑎 − 𝑅𝑏). sin(60°))2 

𝑞3 = −𝑧 ± √𝐿𝑏2 − (𝑥 − (𝑅𝑎 − 𝑅𝑏). cos(60°))2 + (𝑦 + (𝑅𝑎 − 𝑅𝑏). sin(60°))2 

 

Since z is always negative, the expression of q3 is as follows: 

  𝑞3 = −𝑧 − √𝐿𝑏2 − (𝑥 − (𝑅𝑎 − 𝑅𝑏). cos(60°))2 + (𝑦 + (𝑅𝑎 − 𝑅𝑏). sin(60°))2 

 

The inverse geometric model is finally given by : 

 𝒒𝟏 =  −𝒛 − √ 𝑳𝒃𝟐 − (𝒙 − 𝑹𝒃 + 𝑹𝒂)𝟐 − (𝒚)𝟐 

 𝒒𝟐 = −𝒛 − √𝑳𝒃𝟐 − (𝒙 − (𝑹𝒂 − 𝑹𝒃). 𝐜𝐨𝐬(𝟔𝟎°))𝟐 + (𝒚 − (𝑹𝒂 − 𝑹𝒃). 𝐬𝐢𝐧(𝟔𝟎°))𝟐 

 𝒒𝟑 = −𝒛 − √𝑳𝒃𝟐 − (𝒙 − (𝑹𝒂 − 𝑹𝒃). 𝐜𝐨𝐬(𝟔𝟎°))𝟐 + (𝒚 + (𝑹𝒂 − 𝑹𝒃). 𝐬𝐢𝐧(𝟔𝟎°))𝟐 
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Observation: 

In the case of this robot with a ternary symmetry, another procedure of obtaining the geometric model 

may be carried out by reducing the size of the basis by Rb (ray of the mobile place). This does not 

modify anything to the output. The mobile plate is hence reduced to a one point of coordinates {x, y , 

z}. The figures below point out the procedure: 

 

 

Figure 5. Parametric representation of the linear Delta by bringing the parallel bars to the centre of the mobile 

plate (by reducing the basis by Rb). (Left) perspective. (Right) top view. The movement of each universal joint, 

respectively at A1, A2 or A3, generate a spherical calotte of diameter Lb and respectively cross the mobile plate 

at the centre of the mobile plate B. 

The three spheres intersect all at the tool centre point and are given by the following equations: 

{S1} (𝑥 − 𝑥𝐴1)2 + (𝑦 − 𝑦𝐴1)2 + (𝑧 − 𝑧𝐴1)2 = 𝐿𝑏2  

{S2} (𝑥 − 𝑥𝐴2)2 + (𝑦 − 𝑦𝐴2)2 + (𝑧 − 𝑧𝐴2)2 = 𝐿𝑏2  

{S3} (𝑥 − 𝑥𝐴3)2 + (𝑦 − 𝑦𝐴3)2 + (𝑧 − 𝑧𝐴3)2 = 𝐿𝑏2  

 

Hence given by: 

{S1} (𝑥 − 𝑅𝑎𝑏)2 + (𝑦)2 +  (𝑧 + 𝑞1)2 = 𝐿𝑏2  

{S2} (𝑥 − 𝑅𝑎𝑏. cos (60°))2 + (𝑦 − 𝑅𝑎𝑏. sin (60°))2 +  (𝑧 + 𝑞2)2 = 𝐿𝑏2  

{S3} (𝑥 − 𝑅𝑎𝑏. cos (60°))2 + (𝑦 + 𝑅𝑎𝑏. sin (60°))2 +  (𝑧 + 𝑞3)2 = 𝐿𝑏2  

 

With Rab = Ra-Rb. 

 

Which correspond to the same equations as before and avoid expressing the coordinates of the 

intersecting points (B1 and B2 and B3).at the mobile plate  

 


